Analysis of Turbulent Premixed Flames at the Laboratory Scale

Marc Day

collaborators:

John Bell, Robert Cheng, Shigeru Tachibana† Vince Beckner, Michael Lijewski

Lawrence Berkeley National Laboratory †Japan Aerospace Exploration Agency, Tokyo, Japan

SciDAC 2009 San Diego, CA 14-18 June 2009

Motivation

DOE's office of Fossil Energy (FE) has a particular interest in ultra-low (< 2 ppm NO $_x$) emissions, fuel-flexible turbines for power generation. Current strategies suggest:

- Lean premixed systems (low exhaust temperature results in low NO_x)
- Array of alternative fuels
 - Hydrogen
 - Syngas mixtures (CO + H₂)
 - Other...Hydrogen + hydrocarbons resulting from gasification processes (coal, biomass, etc.)

Low-swirl burner

Low-swirl burner technology developed at LBL is a leading candidate for meeting requirements of low-emissions turbines

- Scalable configuration for atmospheric and high-pressure
- Stabilized by swirl-induced flow divergence (no pilot)
- Simple geometry ammenable to simulation

Standard flame theory, lean CH₄ flames

Characterizing experimental low-swirl flames

CH₄-air flames well-approximated by "standard flame model"

- Continuous flame separates fuel from products
- Propagates as flat flame, enhanced by surface wrinkling
- Simple model is basis of engineering design/analysis
- Model also used to interpret experimental diagnostics (e.g. Mie-scattering → flame position)

Cellular burning in lean H₂ flames

Freely propagating H₂ flames burn in "cellular" patterns

(Thermo-diffusively unstable flame, photo 1959)

- Highly variable burning, regions of local flame extinction
- Temperature, fuel profiles not sensible "progress variables"
- Standard turbulent flame model is not applicable

Quantitative analysis requires detailed simulation

Relevant scales: turbulent laboratory LSB flame

Spatial Scales

- Domain $L \approx 10$ cm
- Flame thickness $\delta_T \approx$ 1 mm
- Integral scale $\ell_t \approx 2-6 \text{ mm}$

Velocity Scales

- Flame speed $\mathcal{O}(10^2)$ cm/s
- Mean Flow $\mathcal{O}(10^3)$ cm/s
- Acoustic Speed O(10⁵) cm/s

An ideal solution approach exploits inherent separation of scales

Solution Approach

Key observations:

- Open laboratory turbulent flames are low Mach number
- Regions requiring high-resolution are localized in space

Our approach: Exploit known scale separations

- Low Mach number formulation
 - Eliminate acoustic waves (and the need to resolve them)
 - Flow expansion at flame leads to global evolution constraint
- Adaptive mesh refinement
 - Dynamically place fine mesh only where needed
 - Synchronized time-stepping across refinement levels
- Parallel architectures
 - Distributed memory, communication via MPI
 - Dynamic load balancing of heterogeneous work associated with detailed chemistry at flame

Low Swirl Burner Simulations

Strategy: Rectangular domain. Nozzle outflow becomes inflow boundary condition

- Mean flow and turbulent intensities from measured data
- Impose synthetic turbulence as a perturbation to mean inflow $(u', \ell_t, \text{from experimental data})$

Typical profile of simulated LSB H₂ flame

- Detailed kinetics and differential transport models (9 species, 27 reactions)
- Quasi-steady solution, slice taken from vertical midplane
- Effective resolution 20483, 4% of domain refined
- Flame thickness $\delta_T \sim 800 \mu \text{m} \ (\Delta x \sim 122 \mu \text{m})^*$

LSB solution - log(OH) + vorticity magnitude

LSB solution - log(OH)

Comparisons with mean velocity from LSB experiment

- Simulation reproduces many salient LSB flame features, including recirculation zone (vertical velocity shown here)
- Discrepancies (flame position, velocity) likely due to (1) boundary data, and (2) lack of sufficient statistics
 - Inlet data scaled from experimental measurements at lower flow rate, difference suggests Re-dependence of flow field
 - Recent data suggests 30% azimuthal fluctuations in experimental means
 - Azimuthally averaged simulation data poor statistics at core

Comparisons with OH-PLIF from LSB experiment

- Comparison of OH slice with typical OH-PLIF measurements, global and fine scales
- Instantaneous large- and fine-scale flame shape/extremely similar, in terms of shape and variability

Comparisons with freely propagating flame

Isotherms colored by local fuel consumption rate (same scale)

- On right, flame propagates into quiescent fuel
- "Natural" cellular structure predominantly spherical
- Turbulence changes character of wrinkling (becomes more cylindrical), enhances local variability
- The "standard model" (thin flame) clearly fails here

Detailed flame analysis

Construct flame-centric coordinate system based on T. Element bounds follow integral curves of ∇T

Local consumption speed

$$s_{c} = \frac{1}{A(\rho Y_{\mathrm{H_{2}}})_{\mathrm{in}}} \int_{\Omega} \omega_{\mathrm{H_{2}}} d\Omega$$

"Flame" statistics conditioned on threshold for s_c

Curvature vs. local burning speed

- \bullet Local burning enhanced 3-4 \times flat flame value, even in flat regions
- Considerable flame surface burning at very low levels
 Burning mode far outside simple turbulent flame models

Detailed flame analysis

Example: Use simulation data to find non-local correlations — i.e. does high values of OH correspond to large "nearby" s_c ?

Search flame normals for peak OH. correlated to s_c ?

Yes! Suggests that OH-PLIF may be used to quantitatively measure "local" (nearby) consumption

Summary

Methodology to simulate realistic turbulent lab-scale flames

- Detailed chemistry and transport (no "turbulence" models)
- Efficient AMR algorithm exploits scale separations
- Flame detail supplements experimental data, validates interpretation of diagnostics

Future work

- Detailed kinetics to include emissions chemistry – investigate experimentally obsesrved NO_x "floor" (see figure)
- High-pressure simulations relevant to turbine application
- Syngas and other lean mixed fuels from gasification processes

